
STRING REVIEW: STARTSWITH()

public boolean beginsHow(String str)

Given a String, return true if it starts with "How". false if it doesn't.
The method is case-sensitive. Capitals DON'T match their lowercase counterparts, i.e. "Abc" does not

match "aBC".

Explanation:

Begin completing this method as usual:

public boolean beginsHow(String str) {
 boolean begins = false;
 if (_____) {
 begins = true;
 }
 return begins;
}

Use the String method startsWith(String s) inside the parentheses:
public boolean beginsHow(String str) {
 boolean begins = false;
 if (str.startsWith("How")) {
 begins = true;
 }
 return begins;
}

The method below uses the other version of startsWith(String s, int start),
that has a 2nd parameter indicating at which position to start looking.
public boolean beginsHow(String str) {
 boolean begins = false;
 if (str.startsWith("How",0)) {
 begins = true;
 }
 return begins;
}

In the code above, the 0 in startsWith() starts the search

at the beginning of the string, with the 1st character.
So startsWith("abc") and startsWith("abc",0) do the same thing.

You can also start the search at other positions:
1 means start at the 2nd character

2 means start at the 3rd character
public boolean beginsHowAtIndex1(String str) {
 boolean beginsAtPos1 = false;
 if (str.startsWith("How", 1)) {
 beginsAtPos1 = true;
 }
 return beginsAtPos1;
}

The method above will match strings like

"xHow are you?" or "#How is that possible?"

STRING REVIEW: STARTSWITH()

Note: you can also use an expression for where to start:

int len = str.length();

int mid = str.length()/2;

len-1 means start at the last character

len-2 means start at the 2nd-to-last character

len-3 means start at the 3rd-to-last character

mid means start at the middle character*

*If the string has an even length, there are two middle characters

and mid is the position of the 2nd one.

For example:

str.startsWith("mm", mid) matches "recommend"

str.startsWith("mm", mid-1) matches "summer"

str.startsWith("ed", len-2) matches "trusted" [an alternative to endsWith()!]

Finally, note that -- unlike with substring(int start, int stop),

which has restrictions on the range of values for its start and stop parameters --

there are NO RESTRICTIONS on the range of values for the start parameter of startsWith().

That is, a negative nunber or one larger than the length of the string will NOT cause a runtime error.

This internal error checking means that your programs can often be much easier to write

using startsWith() than those that use combinations of length(), substring() and/or equals().

public boolean endsGerund(String str)

Given a String, return true if it's a gerund, i.e. it ends with "ing". Return false if it doesn't.
The method is case-sensitive. Capitals matter DON'T match their lowercase counterparts, i.e. "Abc" does

not match "aBC".

Explanation:

Begin completing this method as usual:

public boolean endsGerund(String str) {
 boolean ends= false;
 if (_____) {
 ends = true;
 }
 return ends;
}

STRING REVIEW: STARTSWITH()

Use the String method endsWith() inside the parentheses:
public boolean endsGerund(String str) {
 boolean ends = false;
 if (str.endsWith("ing")) {
 ends = true;
 }
 return ends;
}

Note that - unlike startsWith() - there are NOT two versions of endsWith().

That is, there is no version with a 2nd parameter.
That means that any string you test will only return true if it

actually ENDS WITH the string you are testing for.

NOTE: There is actually a way to solve this problem using startsWith().
public boolean endsGerund(String str) {
 boolean ends = false;
 int len = str.length();
 if (str.startsWith("ing",len-3)) {
 ends = true;
 }
 return ends;
}

Why do we use "len-3" for the 2nd parameter?

Because the length of "ing" is 3.

This causes startsWith() to start checking beginning at the 3rd-to-last character.

If we wanted to check whether a String ends with "ment",
we would use len-4: str.startsWith("ment",len-4)

This causes startsWith() to start checking beginning at the 4th-to-last character.

If we wanted to check whether a String ends with "ed",
we would use len-2: str.startsWith("ed",len-2)

This causes startsWith() to start checking beginning at the 2nd-to-last character.

public boolean beginsHowIgnoreCase(String str)

Given a String, return true if it starts with "How". false if it doesn't.

The method is case-INSENSITIVE, that is, capitals (upper case letters) and lower case letters match.

Explanation:

This can be done with just two easy changes:

public boolean beginsHowIgnoreCase(String str) {

STRING REVIEW: STARTSWITH()

 boolean begins = false;
 str = str.toLowerCase();
 if (str.startsWith("how",0)) {
 begins = true;
 }
 return begins;
}

(1) Use toLowerCase(), which creates a version of the string where all letters are lower case.

(2) Change the 1st parameter in startsWith() from "How" to "how" (all lowercase).

Note that you need to RE-ASSIGN the value of this new string to the str variable:

str = str.toLowerCase();

public boolean endsGerundIgnoreCase(String str)

Given a String, return true if it ends with "ing". false if it doesn't.
The method is case-INSENSITIVE, that is, capitals (upper case letters) and lower case letters match.

Explanation:

This can be done with just one easy change:

public boolean endsGerundIgnoreCase(String str) {
 boolean ends = false;
 str = str.toLowerCase();
 if (str.endsWith("ing")) {
 ends = true;
 }
 return ends;
}

(*) Use toLowerCase(), which creates a version of the string where all letters are lower case.

Note that you need to RE-ASSIGN the value of this new string to the str variable:

str = str.toLowerCase();

ublic boolean almostEndsFUL(String str)

Given a String, return true if it ALMOST ends with the suffix "ful".

Return false if it doesn't.

STRING REVIEW: STARTSWITH()

What does ALMOST mean exactly?
In this case, if you were to chop off the last character,

return true if that truncated substring ends with "ful".

Explanation: We've already mentioned that endsWith() does NOT have two versions.
That is, there is no version with a 2nd parameter, as with startsWith().

That means that any string you test will only return true if it
actually ENDS WITH the string you are testing for.

That being said, there is a WORKAROUND if you want to test whether

a string "ends with" a letter sequence one or more characters BEFORE
the end of the string. That is, by ignoring one or more characters at the end.

This can be done using startsWith()!.

Begin by writing a method to test whether a string ends with "ful".

public boolean almostEndsFUL(String str) {
 boolean ends = false;
 int len = str.length();
 if (str.startsWith("ful",len-3)) {
 ends = true;
 }
 return ends;
}

Change "len-3" to "len-4" !

This will direct startsWith() to begin checking, not at the 3rd-to-last letter,
but beginning at the 4th-to-last letter from the end.
public boolean almostEndsFUL(String str) {
 boolean ends = false;
 int len = str.length();
 if (str.startsWith("ful",len-4)) {
 ends = true;
 }
 return ends;
}

public boolean almostEndsFUL(String str) {

 int len = str.length();

 boolean answer = str.startsWith("ful",len-4);

 return answer;

}

public boolean almostEndsFUL2(String str) {

 int len = str.length();

 String s = str.substring(0,len-1);

STRING REVIEW: STARTSWITH()

 boolean answer = s.endsWith("ful");

 return answer;

}

